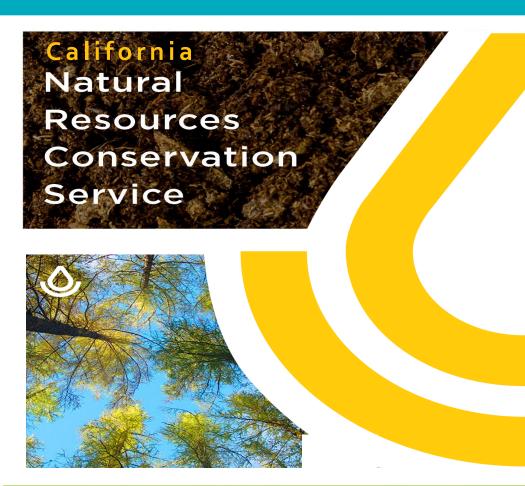
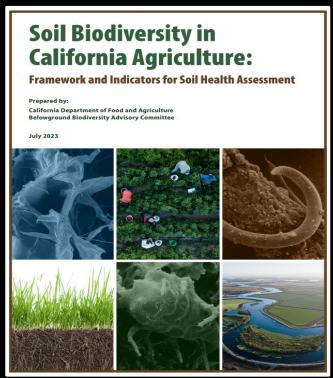


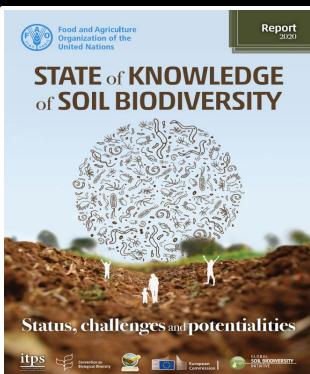
350 Community Forum On Regenerative Agriculture


United States Department of Agriculture

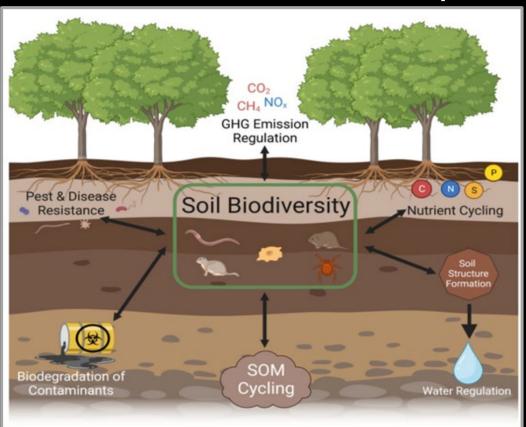
Tony Rolfes NRCS CA State Soil Scientist NRCS Soil Health Principles
April 27th, 2024

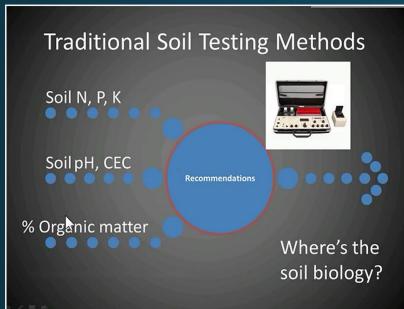
SOIL HEALTH DEFINITIONS:

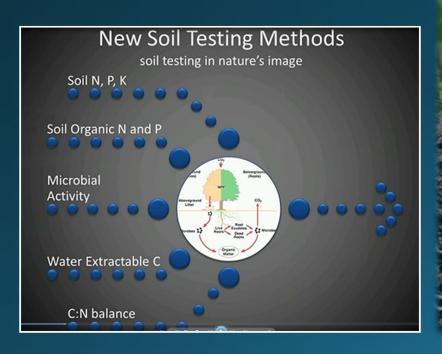

NRCS: The <u>continued capacity</u> of the soil to <u>function</u> as a <u>VITAL LIVING ECOSYSTEM</u> that sustains plants, animals, and humans.


CALIFORNIA Defined in SB 859 - Healthy Soils Program: Soils that enhance their <u>continuing capacity to function</u> as a <u>Biological System</u>, increase soil organic matter, improve soil structure and water- and nutrient-holding capacity, and result in net long-term greenhouse gas benefits."

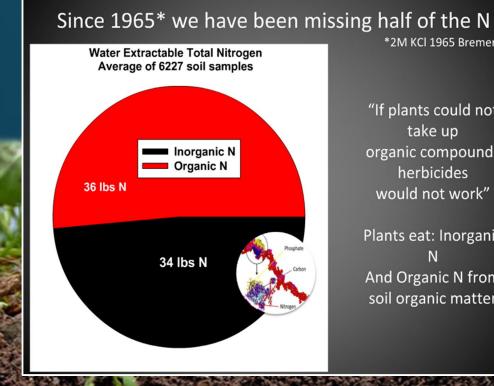
Healthy Soil Contains 6.5 Tons of Organisms per Acre = Weight of 8 Cows



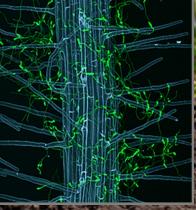

A Look at the Biological System of Soil



Functions of Soil Biodiversity



Soil Testing: Traditional vs New Methods For a Biological System



"If plants could not take up organic compounds herbicides would not work"

*2M KCl 1965 Bremer

Plants eat: Inorganic And Organic N from soil organic matter

Understanding Soil Health

Soil Resp. 111.0 ppm CO2

Microbial Active Carbon (%MAC)

< 25%	Water Extractable Carbon (WEOC) not factor limiting respiration, soils overall fertility, or prolonged cold temp or drought is limiting soil respiration
50 to 75%	Tells you that the soil has a good balance of fertility and WEOC to support microbial biomass, but you are not limited by your WEOC pool.
> 80%	WEOC could become limiting to microbial respiration soon and your management focus should be on introducing more carbon into the system.

31-50	Slightly Below Average	Low to moderate potential for microbial activity; Some N credit		
		may be given		
51-70	Slightly Above Average	Moderate potential for microbial activity; Moderate N credit		
		may be given; May be able to start reducing some N fertilizer		
		application		
71-100	Above Average	Good potential for microbial activity; Moderate N credit may		
		be given depending on size of organic N pool; Can typically		
		reduce N application rates		
101-200	OO High High potential for microbial activity; more carb			
		be needed to sustain microbial biomass; moderate to high N		
		credit from available organic N pools may be given; N fertilizer		
		reduction can be substantial		
>201	Very High	High to very high potential for microbial activity; residue		
		decomposition may be <1 yr.; keeping the soil covered could		
		be a problem in some systems; high potential for N		
		mineralization and N credits from available organic N pools		

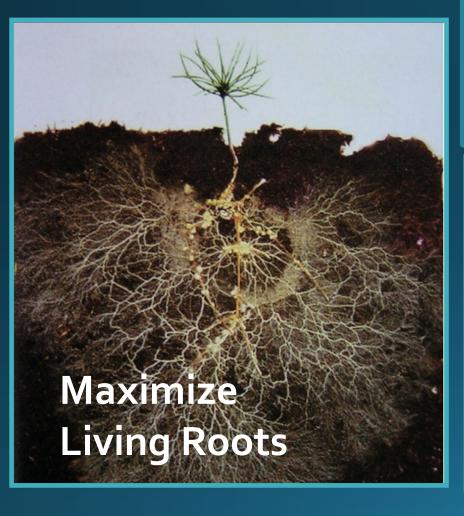
may be given: N fertilizer reduction can be substantial

HANEY SOIL HEALTH ANALYSIS

Nitrogen Comparison

Traditional	Haney	Differ.	Savings			
N	N	N	N			
lbs/A	lbs/A	Ibs/A	\$/A			
8.5	52.3	43.9	45.65			

rom Higher Y


Environmental Benefits

Principles of Soil Health A Living Ecosystem

How does it help environmentally and economically?

Soil Health Management System

PEST PRESSURES

IMPROVES NUTRIENT USE EFFICIENCY

IMPROVES WATER QUALITY

CONSERVES WATER

IMPROVES PLANT HEALTH

IMPROVES WATER EFFICIENCY TO CROPS

RENEWABLE RESOURCES

AIR QUALITY

PLANT POLLINATION

Conservation Crop Rotation

Growing a diverse number of crops in a planned sequence in order to increase soil organic matter and biodiversity in the soil.

Cover Crop

An un-harvested crop grown as part of planned rotation to provide conservation benefits to the soil.

No Till

A way of growing crops without disturbing the soil through tillage.

Mulch Tillage

Using tillage methods where the soil surface is disturbed but maintains a high level of crop residue on the surface.

Mulching

Applying plant residues or other suitable materials to the soil surface to compensate for loss of residue due to excessive tillage.

Nutrient Management

Managing soil nutrients to meet crop needs while minimizing the impact on the environment and the soil.

Pest Management

Managing pests and promoting the growth of healthy plants with strong defenses, while increasing stress on pests and enhancing the habitat for beneficial organisms.

Questions

